

Specialized Recombinant Nucleosomes

Functionalized nucleosome substrates for drug discovery and chromatin research

Nucleosomes are the physiological target of readers, writers and erasers that interact with or modify chromatin. The incorporation of nucleosome substrates into drug discovery assays is a dramatic improvement over peptides, providing access to historically challenging targets.

EpiCypher has pioneered the manufacture of nucleosomes for epigenetics research and drug discovery, producing the highest quality products available. We offer a rapidly expanding portfolio of fully defined and homogeneous recombinant nucleosomes incorporating different histone and DNA modifications, site mutations, or histone variants.

De-methylase Histone (AlphaNuc™) Assay to KDM4A-mediated demethylation using EpiCypher H3K36me3 dNuc substrate (0.1 nM, Cat. No. 16-0320). KDM4A levels were titrated in the presence (+2OG) or absence (-2OG) cofactor 2-oxoglutarate. Demethylation was detected by anti-H3K36me1 antibody bound by Protein A Acceptor Beads (PerkinElmer). The addition of Streptavidin Donor beads (PerkinElmer) induced an AlphaLISA signal by binding the biotinylateddNuc. Asterisks indicate a significant difference between +20G/-20G cofactor conditions at the indicated KDM4A concentration. Assay Factor at 111.1 nM KDM4A was 0.72.

Characteristics

Recombinant Nucleosomes

- · Fully recombinant human histones
- 601 Nucleosome positioning sequence (biotinylated)

Advantages

- · Devoid of post-translational modifications
- · Stably positioned nucleosome
- Suitable for enzyme assays, inhibitor testing and high throughput screening (modification addition)

dNucs

rNucs

Designer Nucleosomes

- Fully recombinant human histones
- · Contain physiological histone PTMs
- 601 Nucleosome positioning sequence (biotinylated)
- · Stably positioned nucleosome
- Suitable for enzyme assays and high throughput screening (modification addition or removal)
- Suitable for protein-protein interaction studies involving the modification of interest

vNucs

Histone Variant Nucleosomes

- · Fully recombinant human histones
- · Includes one of several histone variants
- 601 Nucleosome positioning sequence (biotinylated)
- · Stably positioned nucleosome
- Suitable for enzyme assays and high throughput screening (modification addition or modification removal)
- Histone deposition studies

oncoNucs

Oncogenic Nucleosomes

- · Fully recombinant human histones
- Contains K-to-M mutations associated with cancer
- 601 Nucleosome positioning sequence (biotinylated)
- · Study effects of mutations on enzyme activity
- Suitable for high throughput screening and inhibitor testing
- Structural studies

<u>EpiDyne</u>™

Chromatin Remodeling Assay Substrate

- Fully recombinant human histones
- Nucleosome positioning sequence with an added nucleosome acceptor sequence
- Functionalized DNA or histones to enable HTS assay development
- Stably positioned nucleosome
- · Substrate for nucleosome remodeling assays
- Suitable for high throughput screening and inhibitor testing

EpiCypher.com

© 2017 EpiCypher, RTP, NC. All rights reserved

See Complete Product Line

Available in Canada from...

1-888-593-5969 • www.biolynx.ca • tech@biolynx.ca

dNucs: Designer Recombinant Nucleosomes With PTMs (Biotinylated)

dNucs Histone Lysine Methylation

	<u>16-0321</u>	50 µg
NEW	16-0334	50 µg
	<u>16-0316</u>	50 µg
	<u>16-0325</u>	50 µg
NEW	<u>16-0324</u>	50 µg
	<u>16-0315</u>	50 µg
	<u>16-0338</u>	50 µg
NEW	<u>16-0339</u>	50 µg
NEW	<u>16-0317</u>	50 µg
	<u>16-0322</u>	50 µg
	<u>16-0319</u>	50 µg
	<u>16-0320</u>	50 µg
NEW	<u>16-0331</u>	50 µg
NEW	<u>16-0332</u>	50 µg
NEW	<u>16-0333</u>	50 µg
	NEW NEW NEW NEW	NEW 16-0334 16-0316 16-0325 NEW 16-0324 16-0315 16-0338 NEW 16-0339 NEW 16-0317 16-0322 16-0319 16-0320 NEW 16-0331 NEW 16-0332

dNucs Histone Acylation

ŀ	∃3K9ac	NEW	<u>16-0314</u>	50 µg
ŀ	H3K9cr	coming soon	<u>16-0351</u>	50 µg
ŀ	H3K14ac	NEW	<u>16-0343</u>	50 µg
ŀ	H3K27ac	coming soon	<u>16-0345</u>	50 µg
ŀ	H4K5ac	coming soon	<u>16-0352</u>	50 µg
ŀ	H4K8ac	coming soon	<u>16-0353</u>	50 µg
ŀ	H4K12ac		<u>16-0312</u>	50 µg
ŀ	H4K16ac	coming soon	<u>16-0354</u>	50 µg
ŀ	H4K5,8,12	2,16ac	<u>16-0313</u>	50 µg

dNucs Histone Arginine Methylation

H2AR3me1 coming soon	<u>16-0359</u>	50 µg
H2AR3me2a coming soon	<u>16-0360</u>	50 µg
H2AR3me2s coming soon	<u>16-0361</u>	50 µg
H3R2me1 NEW	<u>16-0340</u>	50 µg
H3R2me2a NEW	<u>16-0341</u>	50 µg
H3R2me2s coming soon	<u>16-0355</u>	50 µg
H4R3me1 coming soon	<u>16-0356</u>	50 µg
H4R3me2a coming soon	<u>16-0357</u>	50 µg
H4R3me2s coming soon	<u>16-0358</u>	50 µg

dNucs Other PTMs

H3S10ph	coming soon	<u>16-0364</u>	50 µg
H2A-Ub*	coming soon	<u>16-0363</u>	50 µg
H3Cit2/8/18	coming soon	<u>16-0362</u>	50 µg

*Enzymatically-modified; contains ubiquitination at H2AK13/15 and H2AK119.

Other Recombinant Nucleosomes (Biotinylated)

oncoNucs AA Substitutions Implicated in Cancer

H3.3K4M coming soon	<u>16-0349</u>	50 µg
H3.3K9M coming soon	<u>16-0350</u>	50 µg
H3.3K27M	<u>16-0323</u>	50 µg
H3.3G34R coming soon	<u>16-0346</u>	50 µg
H3.3G34V coming soon	16-0347	50 µg
H3.3G34W coming soon	<u>16-0348</u>	50 µg
H3.3K36M coming soon	<u>16-0344</u>	50 µg

vNucs Histone Variants

H2AX	NEW	<u>16-0013</u>	50 µg
H2AZ.1	NEW	<u>16-0014</u>	50 µg
H2AZ.2	NEW	<u>16-0015</u>	50 µg
H3.3		<u>16-0011</u>	50 µg
U2 2	. Initiation data at	16 0012	100

rNucs

Human Recombinant, No PTMs

Mononucleosomes, non-biotinylated 16-0009 100 μg	Mononucleosomes, biotinylated	<u>16-0006</u>	50 µg
		<u>16-0009</u>	100 µg

Recombinant Nucleosome Remodeling Substrates

EpiDyneTM Monitor Nucleosome Remodeling *in vitro*

EpiDyne Nucleosome Remodeling Assay Substrate ST601-GATC1	16-4101 NEW	50 µg
EpiDyne Remodeling Assay Substrate DNA ST601-GATC0	18-4100 NEW	50 µg
EpiDyne Remodeling Assay Substrate DNA ST601-GATC1	18-4101 NEW	50 µg

Custom nucleosome synthesis available.

Please contact tech@biolynx.ca for more information.

EpiCypher.com

