Lipidic Cubic Phase Crystals

Crystallization in the Lipidic Cubic Phase (LCP) has evolved into an important method for crystallization of membrane proteins, with the lipid Monoolein being the first choice to create a stable LCP. In the past few years however, the short lipids 7.7 $MAG^{[4,7]}$, 7.8 $MAG^{[6-8]}$. 7.9 $MAG^{[5,7]}$ have become increasingly popular and the recent progress in applying the highly viscous lipidic cubic phase for serial femtosecond crystallography (LCP-SFX) [1-3] further accelerates the success of the LCP method by

- > delivering the crystal-loaded viscous LCP directly into the XFEL beam (thereby reducing sample consumption in comparison to liquid injectors),
- > taking advantage of the inherently small crystals grown in LCP,
- > avoiding tricky crystal mounting from LCP.

LCP Lipid	Lipid structure	Cat-No.	Amount
Monoolein 9.9 MAG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X-LCP-101	1 g
7.7 MAG		X-LCP-105	100 mg
7.8 MAG	о _{ОН}	X-LCP-106	100 mg
7.9 MAG Stable at low temperatures ^[9]	OH OH	X-LCP-107	100 mg
Monopalmitolein 9.7 MAG	О ОН ОН	X-LCP-102	1 g
Monovaccenin 11.7 MAG		X-LCP-103	100 mg
Monoeicosenoin 11.9 MAG	ů o o o o o o o o o o o o o o o o o o o	X-LCP-104	1 g

References:

- [1] Nogly et al. (2016) Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat. Commun. 7:12314.
- [2] Zhu et al. (2016) Serial Femtosecond Crystallography of Membrane Proteins. Adv. Exp. Med. Biol. 922:151.
- [3] Batyuk et al. (2016) Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Sci. Adv. 2:e1600292.
- [4] Coincon et al. (2016) Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat. Struct. Mol. Biol. 23:248.
- [5] Li et al. (2015) Ternary structure reveals mechanism of a membrane diacylglycerol kinase. Nat. Commun. 6:10140.
- [6] Fowler et al. (2015) Gating Topology of the Proton-Coupled Oligopeptide Symporters. Structure 23:290.
- [7] Caffrey (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Cryst F 71:3.
- [8] Li et al. (2013) Crystal structure of the integral membrane diacylglycerol kinase. Nature 497:521.
- [9] Misquitta et al. (2004) Rational design of lipid for membrane protein crystallization. Journal of Structural Biology 148:169.

Phone +49(0)3641-6285 000

