

<u>Contichrom® overview</u> all-in-one purification equipment with a novel process principle

UCB Slough November 12th 2012

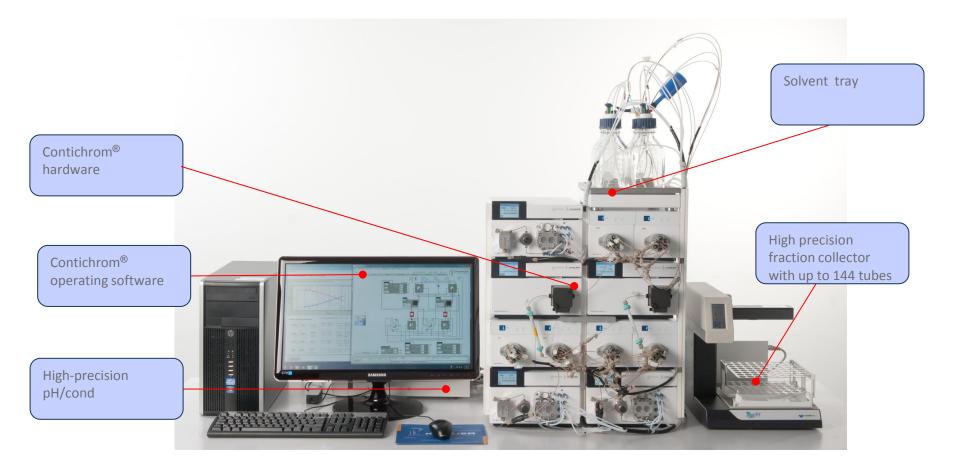
Contichrom® advantages

ENABLES

- the large volume purification of chemicals and biologics
- the generation of lifecycle extensions for marketed biologics

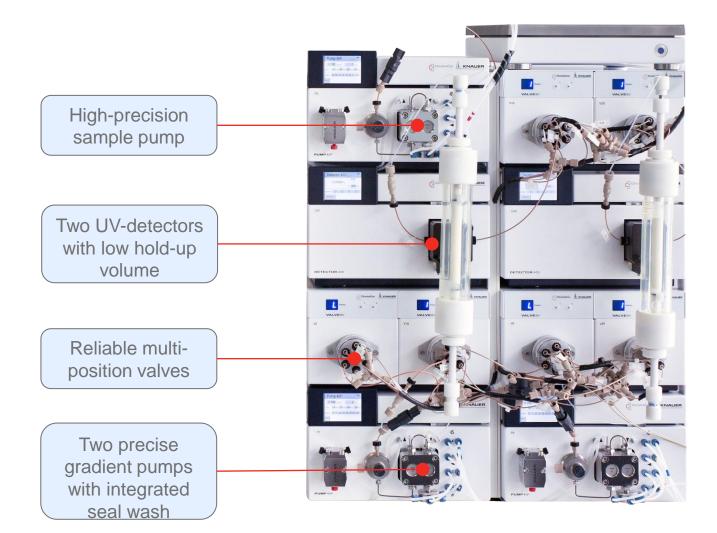
SAVES

- 30% CAPEX & 50% OPEX
- Purity increase by 50%
- Yield increase by 50%
- Throughput increase 10x
- Buffer reduction -75%


ACCELERATES

- Discovery of leads
- Development retaining product profile at upscaling

// www.chromacon.ch // Contichrom® overview // for Knauer // February 13th 2013



Contichrom®: Hardware Overview

Contichrom®: Hardware Overview

// www.chromacon.ch // Contichrom® overview // for Knauer // February 13th 2013

Contichrom®: Equipment Lines

Discovery

• Enabling on-line enrichment of lead targets for enhanced discovery via LC-MS/MS

Lab-scale


• Cost-competitive, all-in-one process capabilities

Pilot-scale (GMP)

• High performance process for preclinical and clinical material

Production-scale (GMP)

• High throughput, reduced CAPEX and COG

Contichrom® offerings

Contichrom[®] product lines:

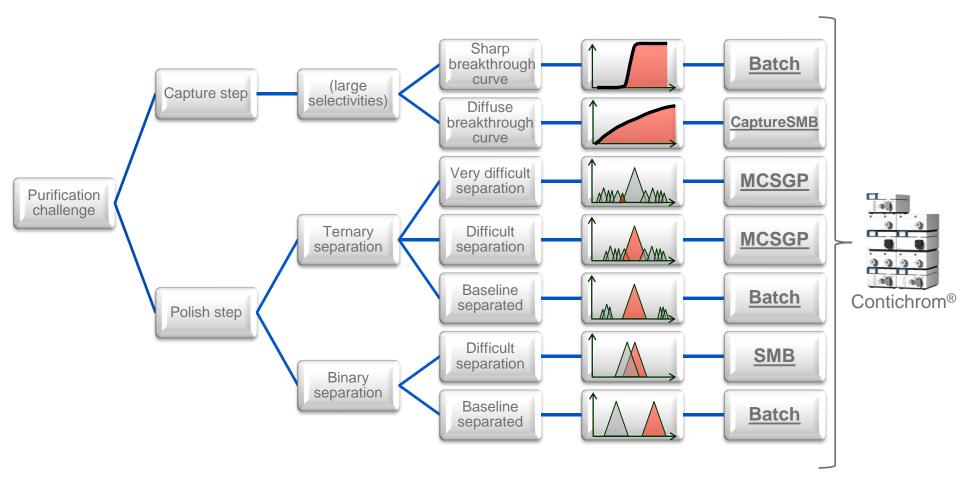
- Lab-10: up to 20g/day
- > Prep-100: up to 200g/day
- Pilot-500: up to 300kg/year (for biopharm PhI-III & market, launch Q2 2013)
- Process scale: with large engineering companies, dedicated to specific customer needs

Services:

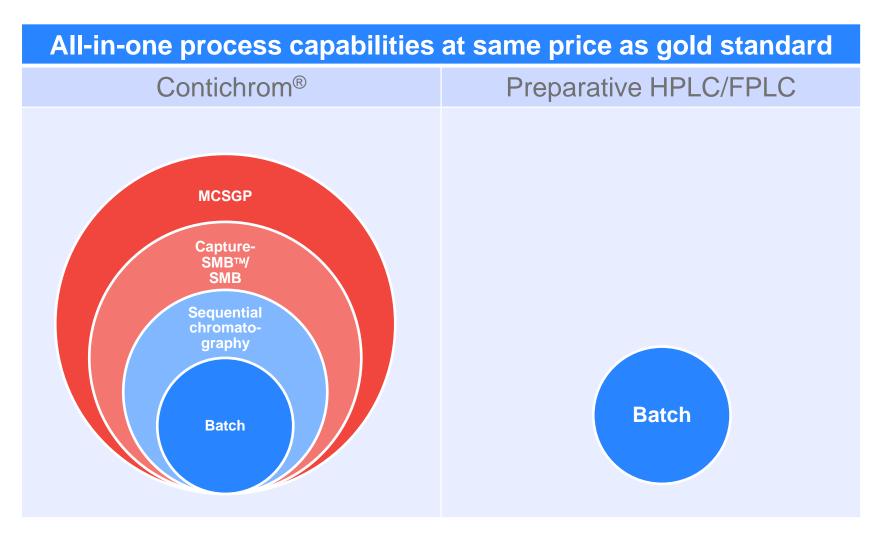
- Feasibility studies, process development & optimization
- > Trainings, webinars

Some Reference Customers

 BMS, Lonza, Merck-Serono, Merck KGa, Merus, Novartis, NovoNordisk, Pfizer, Roche, Scinopharm, ETHZ, DSM



Use of Contichrom®



Contichrom®: all-in-one process solutions

Contichrom[®]: Sales Proposition

Use of Contichrom®

Discovery

- Isolation of leads
- Key driver: speed to lead isolation through enrichment

Process development

- > Isolation of related impurities
- Fast semi-automated process development
- Key driver: speed and robust process

GMP manufacturing

- For clinical trial material and for market supply
- Key drivers: Compliance, Quality/reliability, CAPEX, OPEX

Application of Contichrom: product classes

Small molecules

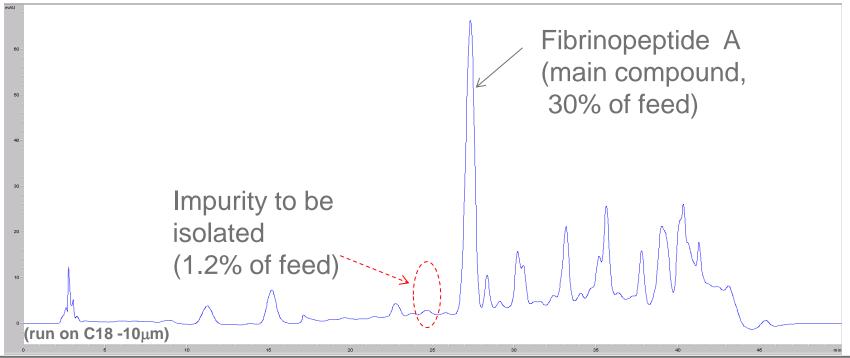
- Pharma
 - Synthetic peptides, chiral molecules, macrolides
 - Antibiotics
 - Complex API
- Nutraceuticals/Food
 - Fatty acids, Flavonoids, Polyphenols, Sweeteners
- Industrial biotech
 - Fatty acids, monomers, organic acids
- Chemical intermediates
- Metals (REE)
- Natural extracts

Proteins

- Recombinant biopharmaceuticals
- Monoclonal antibodies (mAbs)
 - Antibody capture with CaptureSMB
 - Antibody polish with MCSGP
 - Aggregate removal
- 2nd generation products
 - Biosimilars
 - Antibody isoforms
 - Bispecific antibodies
 - PEGylated and conjugated proteins
- Blood plasma products

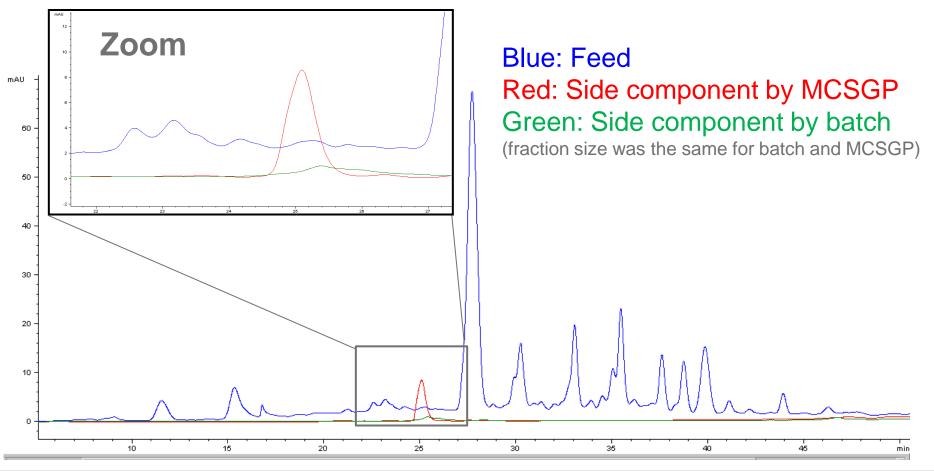
Compatibility of Contichrom®

- Contichrom[®] can be used with all chromatographic modes, e.g.
 - ≻ RP
 - > CIEX
 - > AIEX
 - ≻ HIC
 - > mixed-mode
 - > SEC
 - > Affinity
 - > ...


Contichrom[®] for discovery

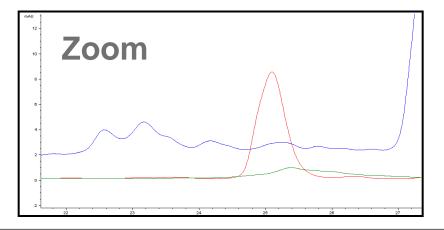
- Applications in Discovery and in the isolation of product-related impurities:
 - The MCSGP process allows selective enrichment of a defined region of the chromatogram
 - The enriched fraction can be isolated for functional characterization or analyzed directly online using mass spectrometry analysis

Impurity isolation using Contichrom® (MCSGP)


- Aim: Isolate weakly adsorbing impurity of Fibrinopeptide A using preparative RP chromatography
- Options:
 - Batch chromatography process
 - > MCSGP process

Impurity isolation using Contichrom[®] (MCSGP)

Fibrinopeptide A: Analytical chromatograms showing feed, purest side component fractions of batch and MCSGP process

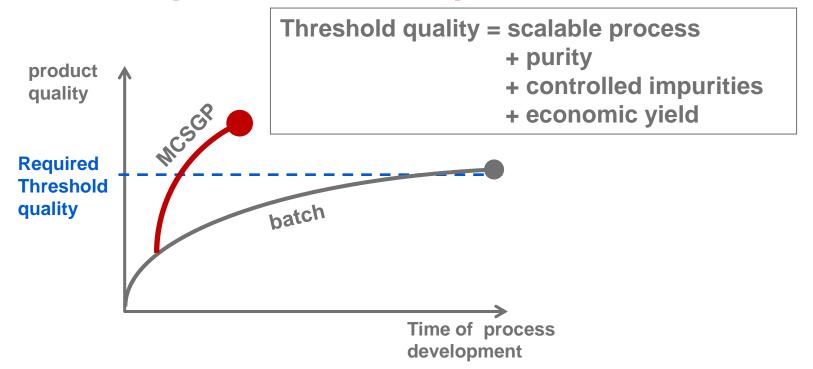


Impurity isolation using Contichrom[®] (MCSGP)

Process performance (Fibrinopeptide A case)

Process	Purity	Concentration factor	Enrichment factor (w.r. to main compound)
MCSGP	> 80%	10x	>600x
Batch	< 20%	1x	n.a. (purity too low)

Blue: Feed Red: Side component by MCSGP Green: Side component by batch



Contichrom[®] in Process Development

- Process development is done with the aim of developing fast a robust process that is scalable
- With Contichrom[®], PD can be shortened:
 - No need for time- consuming screening as the starting point is a simple non-optimized batch column step that is inherently optimized in the MCSGP mode
 - Automated process conversion from batch to MCSGP yielding superior process quality features
 - The MCSGP process is easily scalable and robust and can level out upstream process variability by providing a constant product profile
 - Small particle size resins can be employed for higher resolution from small scale to large scale useful for separating aggregates and related impurities

Contichrom® process development

In order to achieve a required threshold quality with an optimized batch process, extensive process development has to be performed. Switching to MCSGP from a simple, nonoptimized batch process yields a superior product quality in a shorter time

Case study:

CaptureSMB® with Protein A on Contichrom®

Executive summary

Using a twin column process (CaptureSMB[®]) with Contichrom[®] equipment instead of a single column process for Protein A capture steps has significant advantages:

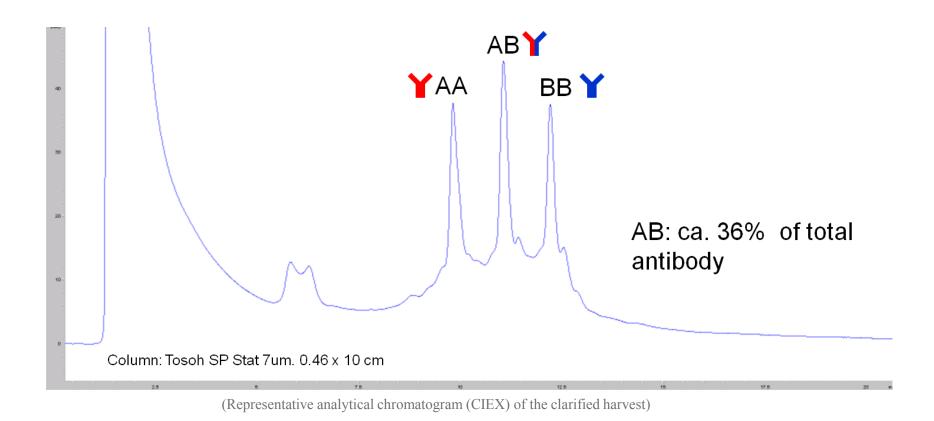
- Higher loading velocities shortening the transit time for the capture step by 200%
- Optimal use of Protein A resin capacity leading to a resin cost saving of 50%

Abstract

- A twin column CaptureSMB[®] process with JSR's Amsphere[™] Protein A media for a cell culture supernatant was successfully executed
- Amsphere[™] Protein A is a small particle, pressure resistant material, suitable for high-velocity applications
- Contichrom[®] equipment was used with a feed flow rate of 300 cm/h
- CaptureSMB[®] has improved resin capacity utilization by more than 200%
- Excellent yield of mAb: 99%
- Buffer consumption reduced by more than 50%
- Significant productivity advantages of CaptureSMB[®] expected at higher loading flow velocities

Process	mAb Pool Concentration	Load per column volume	Ratio of load to static capacity	Buffer consumption
	[mg/mL]	[mg/mL]	[%]	[L/g]
CaptureSMB®	7.3	36.5	90%	0.29
Batch	3.3	16.3	40%	0.65

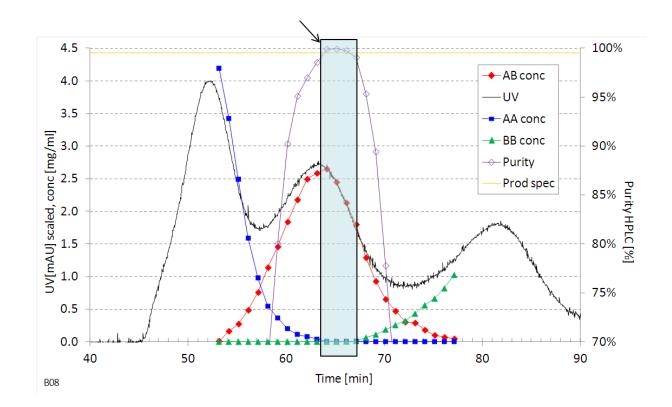
// www.chromacon.ch // Contichrom® overview // for Knauer // February 13th 2013



Bi-specific mAb purification

- Partner: merus
- Purification of a common light chain bispecific antibody using Contichrom (MCSGP)

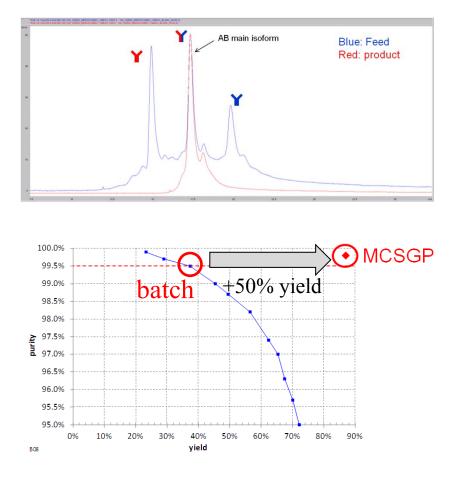
Purification challenge



// www.chromacon.ch // Contichrom® overview // for Knauer // February 13th 2013

Purification challenge

- Preparative overloaded run (0.5 x 15 cm column, Poros 50HS)
- Only a small fraction of the product is in specification!

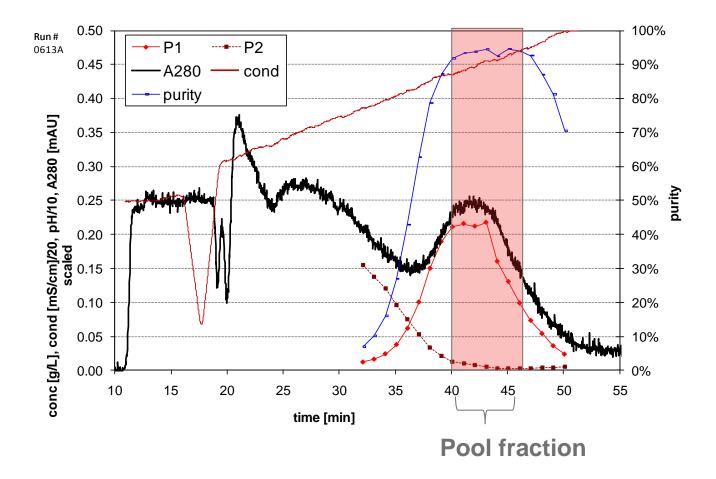


Contichrom® (MCSGP) performance

Contichrom[®] (MCSGP):

delivers high purity >99.5%

- increases yield by 50%
 - batch yield: 37%
 - MCSGP yield: 87%


Purification of PEGylated proteins

- Preparative separation with AIEX
- Separation of mono-PEGylated protein from multiand un-PEGylated protein
- Model system

Preparative AIEX Separation – batch

Linear gradient elution, single column, load 4.3 g/L

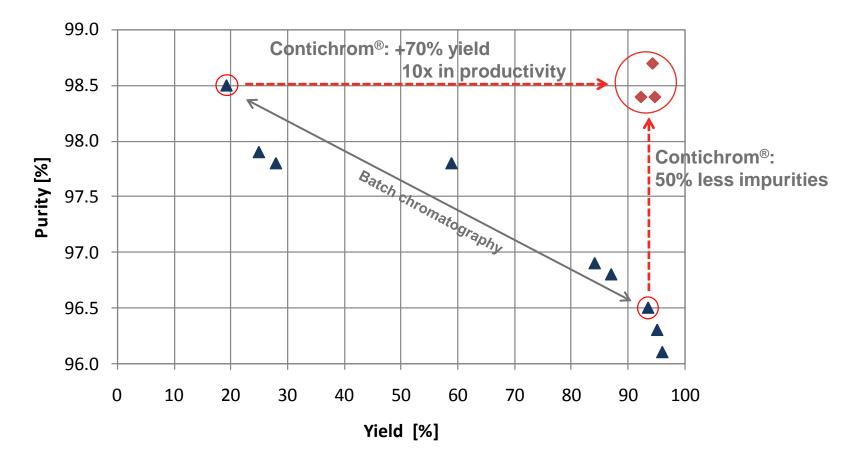
Preparative AIEX Separation – comparison

Contichrom[®] significantly increases the yield at high purity

Application

Peptide Purification

Acknowledgments:


Bristol-Myers Squibb	ChromaCon [®] A new dimension in purification	HARMACEUTICALS-		
Purification of a therapeutic peptide by continuous chromatography (MCSGP)				
Thomas Müller-Späth ¹ ,	Guido Ströhlein ¹ , Olav Lyng	jberg ² , Derek Maclean ³		
¹ ChromaCon AG, Technoparkstr. 1, 8005 Zurich, Switzerland ² Bristol-Myers Squibb, Process R&D, 1 Squibb Drive, New Brunswick, NJ 08903, USA ³ KAI Pharmaceuticals, 270 Littlefield Avenue, South San Francisco, CA 94080, USA				

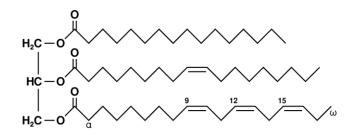
 Aim of project: Purify a peptide from chemical synthesis with high yield and high purity

Comparison: Batch and MCSGP

Overview of results

Comparison of multi-column, lab-scale system

	Contichrom [®] all-in-one (ChromaCon)	Octave [®] (Semba Bioscience)	BioSMB [®] (Tarpon Biosystems)	
No. of columns	2	4 (max. 8)	6 (max. 16)	>90% of applications require only 2 columns
No. of valves	8	72	128	Less hardware increases robustness
Process modes:	 CaptureSMB/SMB MCSGP Batch Seq. flowthrough 	CaptureSMB/SMB	CaptureSMB/SMB	Contichrom [®] has all-in- one process capabilities
Misc.	 1 gradient pumps no need for utilities 	 no gradient pumps requires pressurized N₂ 	 no gradient pumps requires pressurized air 	more flexibility


ω -3 fatty acid separation

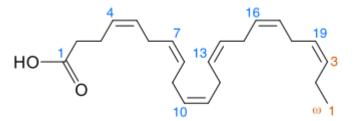
- Fatty acids are useful in for many applications, including in pharmaceuticals, nutraceuticals, food supplements and chemical intermediates
- Often large volumes (multi-tons) at high purity (>80%) are required for the applications
- Classical large-scale purification techniques such as distillation and precipiation are not capable of providing high purity fatty acids
- Comparing available purification technologies, Contichrom® with MCSGP seems to be the only available production technology capable of producing high volume, high purity fatty acid products at reasonable COG

Introduction: Fat, Oil

• Oil (liquid at room temperature), fat (solid at room temperature):

Example of an unsaturated fat triglyceride. Left part: glycerol, right part from top to bottom: palmitic acid, oleic acid, alpha-linolenic acid,

11


14

Source: Wikipedia

- Major ω-3 fatty acids:
- Eicosapentaenoic acid (EPA): C20:5

The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the *n* end. Thus, EPA acid is a polyunsaturated n-3 (omega-3) fatty acid

Docosahexaenoic acid (DHA): C22:6

ω

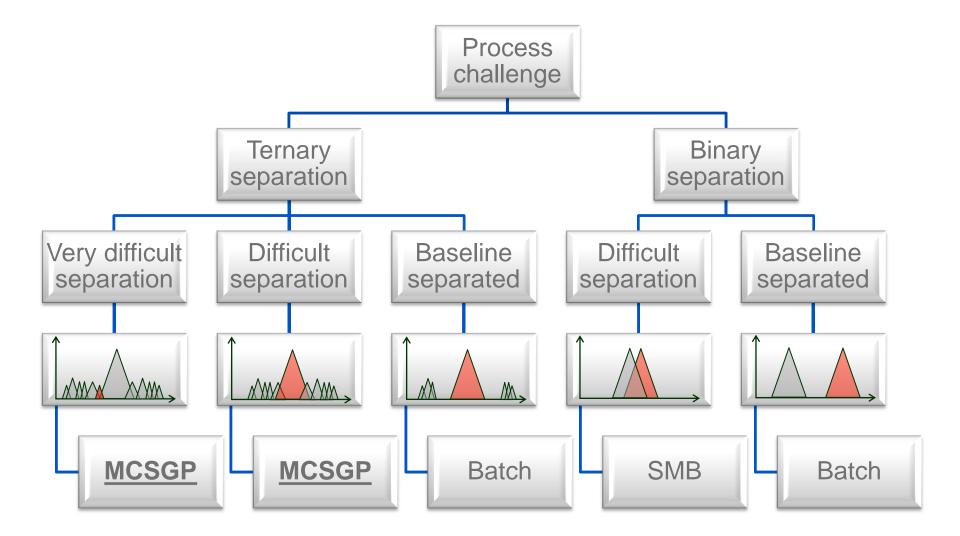
20

17

Experimental verification

Performance summary:

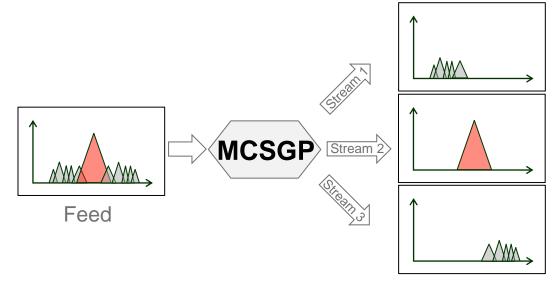
	MCSGP (20 μm resin)	Batch (15 μm resin)	Improvement by MCSGP
Purity [%]	>97%	>97%	
Yield [%]	90%	36%	+ 250%
Productivity (Throughput) [(g product)/(L resin)/(hr operation time)]	65	11	+ 590%
Solvent Consumption [L solvent/g product]	0.8	3.2	- 75%



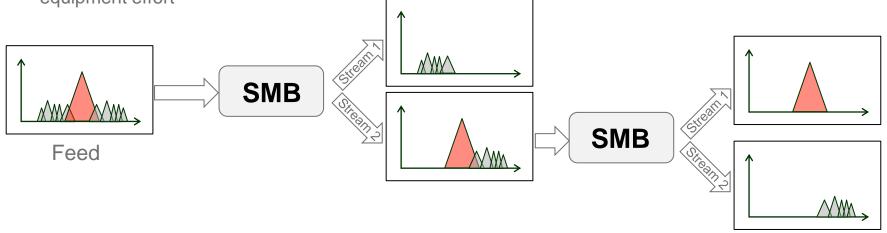
Purification of EPA: Scale-Up modelling

Contichrom® (2 c	olumn MCSGP)	Batch
Lab/prep scale (for feasibility)	i.d. 4.5cmx15cm columns, 200kg/year	
Pilot-scale (2 t/year)	i.d. 15cmx15cm columns, solvent: 133m ³ /month	i.d. 45cmx25cm column, solvent: 530m ³ /month
Production- scale (100 t/year)	i.d. 100cmx15cm columns, solvent: 6'700m ³ /month	i.d. 317cmx25cm column, solvent: 26'700m ³ /month
		Column size not feasible in batch

Contichrom®: all-in-one process solutions



Other processes for complex separations


Process	Performance comparison with respect to MCSGP
Batch chromatography	Relativ to MCSGP, process has
Caroussel	 2-3x higher buffer consumption 10x higher stationary phase volume
Annular chromatography	 lower yields and purities

MCSGP can purify complex mixtures in a single step

Two SMB units needed for the same task: ⇒ low throughput, high buffer consumption, large equipment effort

